Structural stability and defect energetics of ZnO from diffusion quantum Monte Carlo.
نویسندگان
چکیده
We have applied the many-body ab initio diffusion quantum Monte Carlo (DMC) method to study Zn and ZnO crystals under pressure and the energetics of the oxygen vacancy, zinc interstitial, and hydrogen impurities in ZnO. We show that DMC is an accurate and practical method that can be used to characterize multiple properties of materials that are challenging for density functional theory (DFT) approximations. DMC agrees with experimental measurements to within 0.3 eV, including the band-gap of ZnO, the ionization potential of O and Zn, and the atomization energy of O2, ZnO dimer, and wurtzite ZnO. DMC predicts the oxygen vacancy as a deep donor with a formation energy of 5.0(2) eV under O-rich conditions and thermodynamic transition levels located between 1.8 and 2.5 eV from the valence band maximum. Our DMC results indicate that the concentration of zinc interstitial and hydrogen impurities in ZnO should be low under n-type and Zn- and H-rich conditions because these defects have formation energies above 1.4 eV under these conditions. Comparison of DMC and hybrid functionals shows that these DFT approximations can be parameterized to yield a general correct qualitative description of ZnO. However, the formation energy of defects in ZnO evaluated with DMC and hybrid functionals can differ by more than 0.5 eV.
منابع مشابه
Quantum Monte Carlo study of the optical and diffusive properties of the vacancy defect in diamond.
Fixed-node diffusion quantum Monte Carlo (DMC) calculations of the ground and excited state energetics of the neutral vacancy defect in diamond are reported. The multiplet structure of the defect is modeled using guiding wave functions of the Slater-Jastrow type with symmetrized multideterminant Slater parts. For the ground state we obtain the 1E state in agreement with experiment. The calculat...
متن کاملCarbon clusters near the crossover to fullerene stability
The thermodynamic stability of structural isomers of C24, C26, C28 and C32, including fullerenes, is studied using density functional and quantum Monte Carlo methods. The energetic ordering of the different isomers depends sensitively on the treatment of electron correlation. Fixed-node diffusion quantum Monte Carlo calculations predict that a C24 isomer is the smallest stable graphitic fragmen...
متن کاملAb initio surface energetics: Beyond chemical accuracy
Density functional theory (DFT) is the work–horse of modern materials modeling techniques, but scattered evidence indicates it often fails for important surface properties. This thesis investigates how DFT estimates of the surface energy (σ) and molecular adsorption energies of ionic systems are affected by the choice of exchange–correlation (xc) functional. Accurate diffusion Monte–Carlo (DMC)...
متن کاملPhase diagram of a quantum Coulomb wire
We report the quantum phase diagram of a one-dimensional Coulomb wire obtained using the path integral Monte Carlo (PIMC) method. The exact knowledge of the nodal points of this system permits us to find the energy in an exact way, solving the sign problem which spoils fermionic calculations in higher dimensions. The results obtained allow for the determination of the stability domain, in terms...
متن کاملEnergy Study at Different Temperatures for Active Site of Azurin in Water, Ethanol, Methanol and Gas Phase by Monte Carlo Simulations
The interaction between the solute and the solsent molecules play a crucial role in understanding the various molecular processes involved in chemistry and biochemistry, so in this work the potential energy of active site of azurin have been calculated in solvent by the Monte Carlo simulation. In this paper we present quantitative results of Monte Carlo calculations of potential energies of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 142 16 شماره
صفحات -
تاریخ انتشار 2015